
•	 Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing interstitial lung 
disease characterized by decline in lung function.

•	 MicroRNAs are small non-coding RNA molecules with functions in gene 
silencing or post-transcriptional gene regulation. Altered microRNA 
expression has been implicated in the pathogenesis of IPF.1 

•	 Further investigation is needed to understand the relationships between 
messenger RNAs (mRNAs) and microRNAs and progression of IPF.

•	 To investigate the relationship between mRNA-microRNA interactions and 
forced vital capacity (FVC) in patients with IPF.

Subjects 
•	 The cohort was drawn from the Idiopathic Pulmonary Fibrosis Prospective 

Outcomes (IPF-PRO) Registry, a multicenter US registry that enrolled patients 
with IPF that was diagnosed or confirmed at the enrolling center in the past  
6 months.2

•	 These analyses were based on samples taken at enrollment from 272 
subjects who had whole blood mRNA and plasma microRNA sequencing 
data that met quality control filters.

Analyses
•	 T-tests were used to determine differential mRNA and microRNA expression 

between subjects with FVC % predicted in the lowest tertile (<63.7% 
predicted; n=90) and the highest tertile (>76.8% predicted; n=92). 

•	 We then used Pearson correlation to identify negatively correlated mRNA-
microRNA pairs among:

	 –	 mRNA transcripts with an absolute fold change >1 and p≤0.05 for the  
		 difference between lowest versus highest tertiles of FVC % predicted.

	 –	 microRNAs with p≤0.05 for the difference between lowest versus highest  
		 tertiles of FVC % predicted.

•	 Functional and network analyses were used to visualize top mRNA-microRNA 
connections. 

•	 mRNA-microRNA interaction analyses were performed in R using miRComb;3 
p-values were adjusted for multiple testing.

•	 Pathways analysis was performed using Ingenuity Pathway Analysis (QIAGEN 
Inc.). Databases searched were miRTarbase, microCOSM, mirDB, targetScan, 
and mirWalk2.

•	 We identified a number of mRNA-microRNA pairs that were 
differentially expressed in patients with IPF in the lowest versus the 
highest tertile of FVC % predicted. 

•	 This supports the idea that microRNA regulation may be related to  
the progression of IPF.

•	 Ongoing studies will assess whether circulating microRNAs and 
their related mRNAs are associated with a greater risk of disease 
progression in patients with IPF.
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Baseline characteristics of subjects in the highest and lowest tertiles of FVC % predicted

Tertile 1: 
FVC <63.7% predicted 

(n=90)

Tertile 3: 
FVC >76.8% predicted 

(n=92)

Age, years 69.5 (64.0, 73.0) 71.0 (65.0, 75.5)

Male 70 (78%) 64 (70%)

White 83 (92%) 87 (95%)

Smoking

Past 58 (64%) 64 (70%)

Never 32 (36%) 27 (29%)

Current 0 1 (1%)

Values are median (Q1, Q3) or n (%).

Subjects

Differential expression of mRNAs and microRNAs
•	 Of 35628 mRNAs and 2576 microRNAs sequenced, 2441 and 214, respectively, met the 

criteria for differential expression between subjects in the lowest versus the highest tertile of 
FVC % predicted. 

•	 A cluster heatmap showed sub-clusters of expression among the top mRNA-microRNA pairs 
from the differentially expressed mRNAs and microRNAs.

•	 The mRNA-microRNA pair with the strongest negative correlation was the nucleotide binding 
protein 1 (NUBP1) transcript and the microRNA hsa-mir-5192 (r=-0.37; p=1.03e-07):

mRNA-microRNA pair with the strongest negative correlation

Functional analyses
MicroRNAs with ≥2 mRNA targets with adjusted p≤0.05, and cumulative percentage of 2441 
differentially expressed mRNAs regulated by each microRNA

Network analyses

Network of mRNA-microRNA interactions with adjusted p≤0.05 

Pathways analysis

mRNA-microRNA pairs with a confirmed connection in ≥1 database searched

Top mRNA-microRNA pairs from the mRNAs and microRNAs differentially expressed between 
subjects in the highest and lowest tertiles of FVC % predicted

cpm, counts per million.
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IGF-1, insulin-like growth factor 1;  
Nrf2, nuclear factor E2-related factor 2.

Darker shades in squares or circles indicate stronger up- or downregulation. Darker shades of arrows indicate connections were found in a greater 
number of the databases searched.

Pathways analysis suggested alterations in pathways previously 
associated with the pathogenesis of IPF or lung injury: aldosterone 

signaling,4 Nrf2-mediated antioxidant response,5 and IGF-1 signaling6
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